
PCJ. Parallel Computing in Java

Marek Nowicki, Piotr Ba la
ICM UW, WMiI UMK

May 5, 2017

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 PCJ history . 3

2 PCJ Fundamentals 5
2.1 Execution in multinode multicore environment 6

3 PCJ basics 7
3.1 Starting PCJ application . 7
3.2 Number of tasks, tasks id’s . 8
3.3 Task synchronization . 8
3.4 Shared variables . 9
3.5 Access to a shared variable . 9

3.5.1 get() and put() . 9
3.5.2 asyncGet() . 10
3.5.3 asyncPut() . 10
3.5.4 broadcast() . 11

3.6 Array as a shared variable . 11
3.6.1 get() . 11
3.6.2 put() . 12
3.6.3 broadcast() . 12

3.7 Output to console . 13
3.8 Input from console . 13
3.9 Reading from file . 14
3.10 Parallel reads from multiple files . 14
3.11 Output to the file . 15
3.12 Java and PCJ library . 15

4 Executing PCJ applications 17
4.1 Linux Cluster . 18
4.2 Linux Cluster with Slurm . 18
4.3 IBM Power 7 (AIX) with Load Leveler 19
4.4 IBM BlueGene/Q . 19
4.5 Cray XC40 . 19
4.6 Intel KNL @ Rescale . 20

1

2

Chapter 1

Introduction

1.1 Motivation

Nowadays, almost everyone interested in parallel and distributed calculations pays
a lot of attention to the development of the hardware. However, changes in har-
dware are associated with changes in the programming languages. A good example
is Java with its increasing performance and parallelization tools introduced in Java
SE 5 and improved in Java SE 6 [3]. Java, from the beginning, put emphasis on
parallel execution introducing as far back as in the JDK1.0 the Thread class. The
parallelization tools available for Java include solutions based on various implemen-
tations of the MPI library [4], distributed Java Virtual Machine [5] and solutions
based on Remote Method Invocation (RMI) [6].

PCJ is a library [1, 2] for Java language that helps to perform parallel and
distributed calculations. The current version is able to work on the multicore
systems connected with the typical interconnect such as ethernet or infiniband
providing users with the uniform view across nodes.

The library implements partitioned global address space model [7] and was
inspired by languages like Co-Array Fortran [8], Unified Parallel C [9], and Tita-
nium [10]. In contrast to listed languages, the PCJ does not extend nor modify
language syntax. For example, Titanium is a scientific computing dialect of Java,
defines new language constructs and has to use a dedicated compiler. When de-
veloping the PCJ library, we put emphasis on compliance with Java standards.
The programmer does not have to use additional libraries, which are not part of
the standard Java distribution. Compared to the Titanium, PCJ does not need a
dedicated compiler to preprocess code.

1.2 PCJ history

The first prototype version of PCJ [2] has been developed from scratch using the
Java SE 7. Java SE 7 implements Sockets Direct Protocol (SDP), which can
increase network performance over infiniband connections. Then the internode
communication has been added allowing users to run multiple PCJ threads within
single Java Virtual Machine.

3

4

PCJ version 3 has been developed in 2013 and includes many bug fixes and
improvements compare to the initial version. Especially the user’s interface has
been stabilized.

PCJ version 4 has been released in November 2014. This version has been
quite stable and has been used as ground for further developments. In particular,
updated version (PCJ 4.1) allowed calling JCuda code.

Next version, PCJ 5, has been developed in 2016. This version introduced new
handling of the Shared variables and some changes in the programmers API. The
names of the methods have been changed to distinguish between synchronized and
asynchronous communication. For example, PCJ.get() has been changed to be
blocking method, for the asynchronous communication PCJ.asyncGet() has been
introduced.

Chapter 2

PCJ Fundamentals

The PCJ library was created with some principles.

Tasks (PCJ threads) Each task executes its own set of instructions. Variables
and instructions are private to the task. PCJ offers methods to synchronize
tasks.

Local variables Variables are accessed locally within each task and are stored in
the local memory.

Shared variables Shared variables are accessible from other PCJ threads. Every
shared variable has to be a field in a class. This class is pointed by enum class
by the @Storage annotation. Type of the shared variable is inferred from the
type of the associated field. There can be multiple enum classes that point
to the same class. Every enum class has to be registered in the thread that
wants to have a shared variables. Other threads can access shared variables
by providing registered enum constant name but do not have to register
enum itself. Storages can be automatically registered on application start
phase if the @RegisterStorage annotation is used on actual StartPoint class.

There is a distinction between nodes and tasks (PCJ threads). One instance of
JVM is understood as a node. In principle, it can run on a single multicore node.
One node can hold many tasks (PCJ threads) – separated instances of threads
that run calculations. This design is aligned with novel computer architectures
containing hundreds or thousands of nodes, each of them built of several or even
more cores. This forces us to use different communication mechanism for inter-
and intranode communication.

In the PCJ there is one node called Manager. It is responsible for setting
unique identifiers to the tasks, sending messages to other tasks to start calculations,
creating groups and synchronizing all tasks in calculations. The Manager node
has its own tasks and can execute parallel programs.

5

6

2.1 Execution in multinode multicore environ-

ment

The application using PCJ library is run as typical Java application using Java
Virtual Machine (JVM). In the multinode environment one (or more) JVM has
to be started on each physical node. PCJ library takes care of this process and
allows a user to start execution on multiple nodes, running multiple threads on
each node. The number of nodes and threads can be easily configured, however,
the most reasonable choice is to limit on each node number of threads to the
number of available cores. Typically, single Java Virtual Machine is run on each
physical node although PCJ allows for multiple JVM scenario.

The communication between different PCJ threads has to be realized in dif-
ferent manners. If communicating threads run within the same JVM, the Java
concurrency mechanisms can be used to synchronize and exchange information. If
data exchange has to be realized between different JVM’s the network communi-
cation using for example sockets has to be used.

The PCJ library handles both situations hiding details from the user. It dis-
tinguishes between inter- and intranode communication and picks up proper data
exchange mechanism. Moreover, nodes are organized in the graph which allows
optimizing global communication.

Chapter 3

PCJ basics

In order to use PCJ library you have to download PCJ-5.x.y.jar file from the PCJ
website: pcj.icm.edu.pl. The PCJ-5.x.y.jar should be located in the directory
accessible by java compiler and java runtime, for example in the lib directory of
your IDE.

3.1 Starting PCJ application

Starting PCJ application is simple. It can be built in the form of a single class
which implements StartPoint interface. The StartPoint interface provides ne-
cessary functionality to start required threads, enumerate them and performs the
initial synchronization of tasks (PCJ threads).

PCJ.deploy() method initializes application using a list of nodes provided as
the second argument. List of nodes contains internet address of the computers
(cluster nodes) used in the simulations.

10 import java.io.IOException;

11 import org.pcj .*;

12

13 public class HelloWorld implements StartPoint {

14

15 public static void main(String [] args) throws IOException {

16 String nodesFile = "nodes.txt";

17

18 PCJ.start(HelloWorld.class , new NodesDescription("nodes.

txt"));

19 }

20

21 @Override

22 public void main() throws Throwable {

23 System.out.println("Hello World!’’);

24 }

25 }

: PcjHelloWorld.java

The code should be saved in the PcjHelloWorld.java file and compiled. Than
it can be run using standard java command:

7

8

javac -cp .:PCJ -5.x.y.jar PcjHelloWorld.java

java -cp .:PCJ -5.x.y.jar PcjHelloWorld

The expected output is presented below:

maj 03, 2017 9:04:35 PM org.pcj.internal.InternalPCJ start

INFO: PCJ version 5.0. SNAPSHOT -4 a9461f built on 2017 -04 -29

18:24:40.743 CEST.

maj 03, 2017 9:04:35 PM org.pcj.internal.InternalPCJ start

INFO: Starting HelloWorld with 2 threads (on 1 node)...

Hello World!

Hello World!

maj 03, 2017 9:04:35 PM org.pcj.internal.InternalPCJ start

INFO: Completed HelloWorld with 2 threads (on 1 node) after 0h 0m

0s.

The above scenario allows running PCJ application within single Java Virtual
Machine. The same code can be run using multiple JVM’s.

3.2 Number of tasks, tasks id’s

In order make clear names, the tasks are called PCJ threads. PCJ library offers
two useful methods:

40 public static int PCJ.threadCount ()

which returns a number of tasks (PCJ threads) running and

45 public static int PCJ.myId()

which returns id of the PCJ thread. PCJ thread id is integer value of the range
from 0 to PCJ.threadCount()-1.

3.3 Task synchronization

PCJ offers PCJ.barrier() method which allows to synchronize all PCJ threads.
While this line is reached, the execution is stopped until all PCJ threads reach the
synchronization line.

Remember, that this line has to be executed by all PCJ threads.

50 public static void PCJ.barrier ()

The user can provide an argument to barrier() which is integer id of the PCJ
thread to synchronize with the current.

55 public static void PCJ.barrier(int id)

In this case, two tasks are synchronized: one with the given id and one which
starts barrier() method. Please note that both tasks have to execute method.

9

3.4 Shared variables

The general rule is that variables are local to the tasks and cannot be accessed
from another task. PCJ offers a possibility to mark some variables as Shared using
Java annotation mechanism.

Every shared variable has to be a field in a class. This class is pointed by enum
class by the @Storage annotation. Type of the shared variable is inferred from the
type of the associated field. There can be multiple enum classes that point to the
same class.

Every enum class has to be registered in the thread that wants to have a shared
variables. Other threads can access shared variables by providing registered enum
constant name but do not have to register enum itself. Storages can be automa-
tically registered on application start phase if the @RegisterStorage annotation is
used on actual StartPoint class.

60 @RegisterStorage(PcjApplication.Shared.class)

61 public class PcjApplication implements StartPoint {

62

63 @Storage(PcjApplication.class)

64 enum Shared { a }

65 public long a;

The Shared annotation can be applied to the single variables, arrays as well as
more complicated objects.

3.5 Access to a shared variable

The PCJ library provides methods to access shared variables, eg. to get the value
stored in the memory of another task (get())or to modify variable located in the
memory of another task (put()).

3.5.1 get() and put()

Both methods: get() and put() perform one-sided communication. This means,
that access to the memory of another task is performed only by the task which
executes get or put methods. The task which memory is contacted does not need
to execute these methods.

The example code presents how to assign a value of the variable a at PCJ
thread 3 to the variable b at PCJ thread 0.

70 double c;

71 if (PCJ.myId()==0) {

72 c =(double) PCJ.get(3, Shared.a);

73 }

Next example presents how to assign value 4.0 to the variable a available at
the PCJ thread 5. This operation is performed by the PCJ thread 0.

75 if (PCJ.myId()==0) {

76 PCJ.put(5.0, 3, Shared.a);

77 }

10

It is important to provide the name of shared variable as a String.
The communication is performed in an asynchronous way, which means that

user has no guarantee that value has been changed or transferred from a remote
task. This may cause some problems, especially for nonexperienced users. PCJ
provides additional methods to solve this problem.

3.5.2 asyncGet()

The asyncGet() method from PCJ library returns value of type PcjFuture and
the value has to be casted to the designated type. The execution of the method
ensures that result is transferred from the remote node. The next instruction will
be executed after the local variable is updated.

PCJ allows also for asynchronous, nonblocking communication. For this pur-
poses the PcjFuture is used. The PcjFuture stores remote value in the local
memory and provides methods for monitoring is process has finished. Additional
method get() is then used to copy transmitted value to the local variable.

Example code presents how to copy the value of the remote variable a from the
task number 5 to task 0.

80 if (PCJ.myId() == 1){

81 PcjFuture d = PCJ.asyncGet(0, Shared.a);

82 // some commands

83 double c = (double) d.get();

84 System.out.println("c ="+c);

85 }

The remote value is transferred to the variable d in an asynchronous way. When
data is available it is stored in the local variable c using synchronous method get().
This command is executed after local variable d is updated.

The data transfer can be ensured using PCJ.waitFor(Shared.a) command.
It waits until data transfer is finished and variable a is updated.

aother possibility is to use isDone() method from PcjFuture class.

3.5.3 asyncPut()

Each PCJ thread can initialize update of the variable stored on the remote task
with the put() method. In the presented example task number 2 updates variable
a in the memory of task 0.

90 if (PCJ.myId() == 0) {

91 PCJ.monitor(Shared.a);

92 }

93 if (PCJ.myId() == 1) {

94 PCJ.put (10.0 , 0, Shared.a);

95 }

96 if (PCJ.myId() == 0) {

97 PCJ.waitFor(Shared.a);

98 System.out.println("a= " + a);

99 }

11

The process is asynchronous, therefore the method waitFor() is used to wait
for transfer to be completed. Method monitor() is used to watch for updates of
shared variable Shared.a.

3.5.4 broadcast()

In order to access variables at all tasks, PCJ provides a broadcast method. This
method puts given value to the shared variable at all tasks. This process is one-
sided communication and typically is initialized by a single node.

100 PCJ.monitor(Shared.a);

101

102 if (PCJ.myId() == 0) {

103 PCJ.broadcast(Shared.a, 2.14) ;

104 }

105

106 PCJ.waitFor(Shared.a);

107 System.out.println("a="+a);

In order to synchronize variables we set up a monitor on the variable Shared.a.
Then broadcast is performed. Finally, all nodes wait until communication is com-
pleted and variable a is updated.

3.6 Array as a shared variable

The shared variable can be an array. Methods put()/asyncPut(), get()/asyncGet()
and broadcast() allow to use arrays. Therefore user can provide index of the array
variable and the data will be stored in the corresponding array element.

3.6.1 get()

It is possible to communicate the whole array as presented below.

110 @Storage(ExampleGetPut.class)

111 enum Shared {

112 array

113 }

114 double array[] = new double [10];

115 ...

116 double [] c = new double [10];

117 ...

118 if (PCJ.myId() == 0) {

119 c = (double) PCJ.get(1, Shared.array);

120 }

121 System.out.println(’’c[2] = ’’+c[2]);

PCJ.get() allows also to communicate elements of array. This is done using
an additional argument which tells which array element should be communicated.

130 @Storage(ExampleGetPut.class)

131 enum Shared {

132 array

12

133 }

134 double array[] = new double [10];

135 ...

136 double [] c = new double [30];

137 ...

138 if (PCJ.myId() == 0) {

139 c[2] = (double) PCJ.get(1, Shared.array , 5);

140 }

141 System.out.println(array [2]);

3.6.2 put()

Similar functionality can be achieved with put() method.

150 @Storage(ExampleGetPut.class)

151 enum Shared {

152 array

153 }

154 double array[] = new double [10];

155 ...

156 if (PCJ.myId() == 0){

157 array [3] = 30.0;

158 // populate array[]

159 }

160

161 PCJ.monitor(Shared.array);

162 if (PCJ.myId() == 0) {

163 PCJ.asyncPut(array , 1, Shared.array);

164 // can be replaced by put()

165 }

166 if (PCJ.myId() == 1) {

167 PCJ.waitFor(Shared.array);

168 }

169

170 System.out.println(PCJ.myId() + "array" + array [3]);

The process is asynchronous, the methods waitFor() and monitor() are used
to watch for updates of shared variable array.

3.6.3 broadcast()

The use of an array in the broadcast is similar to the use of the simple variable.

180 @Storage(ExampleGetPut.class)

181 enum Shared {

182 array

183 }

184 double array[] = new double [10];

185 ...

186 // populate array[] at PCJ thread 0

187 ...

188 PCJ.monitor(Shared.array);

189

190 if (PCJ.myId() == 0) {;

13

191 PCJ.asyncBroadcast(array , Shared.array);

192 }

193

194 PCJ.waitFor(Shared.array);

195

196 System.out.println(PCJ.myId() + " array bcasted " + array [3]);

3.7 Output to console

Since PCJ tasks are independent, the output is realized by every task. Simple
System.out.println() will result in multiple lines in the output. In principle
number of lines will be a number of threads. However once PCJ application is run
on multiple VM’s, the detailed behavior depends on the mechanism used to launch
an application. In many cases a user will output from the local virtual machine.

The good practice is to limit I/O operations to the dedicated PCJ thread,
for example, one with id equals to 0. This is easily performed using conditional
statements and PCJ.myId() method.

200 if (PCJ.myId()==0) {

201 System.out.println("Hello!");

202 }

One should remember, that outed variables could have a different value on
different threads.

The output using files could be performed in a similar way.

3.8 Input from console

The input can be performed by each task independently. This makes some pro-
blems while executing with multiple threads. In order to reduce the number of I/O
operations, the input form the standard input is performed by designated thread
(eg. thread with id equals to 0) and that value of the data is broadcasted to the
other threads.

210 @Storage(ExampleGetPut.class)

211 enum Shared {

212 a

213 }

214 int a;

215 ...

216 Scanner stdin = new Scanner(System.in);

217

218 PCJ.monitor(Shared.a);

219 if (PCJ.myId()==0) {

220 a = stdin.nextInt ();

221 PCJ.broadcast(a, Shared.a);

222 }

223 PCJ.waitFor(Shared.a);

224

225 System.out.println(PCJ.myId() + " a = "+a);

14

The input is performed by PCJ thread 0, therefore all other tasks (PCJ thre-
ads) have to wait until value of variable a is broadcasted. This is realized using
PCJ.monitor() and PCJ.waitFor() methods. Please note that both methods
are executed by all tasks while broadcast() is one-sided communication and is
executed only by task PCJ thread id 0.

Variable a can be of different type such as, double, String etc.

3.9 Reading from file

The reading from the file is performed independently by each thread. Each PCJ
thread creates its own file handler and controls reads/writes from the file.

230 String b;

231 Scanner sc = null;

232 try {

233 sc = new Scanner(new File("input.txt"));

234 } catch (FileNotFoundException ex) { }

235 b = sc.next();

236 System.out.println(PCJ.myId() + "> " + b);

In result each thread receives handler to the file input.txt and reads first line
from the file. The output looks like:

0 > line1

1 > line1

Each thread can read file independently line by line. If one of the PCJ threads
reads more lines, threads can point to the different lines. In result read performed
by all threads can return different values.

250 b = sc.next();

251 if (PCJ.myId() == 0) {

252 b = sc.next();

253 System.out.println(PCJ.myId() + "> " + b);

254 }

Output is as following:

0 > line1

3.10 Parallel reads from multiple files

The reading from a single file requires access to this file from all PCJ threads. In
the case of the multinode systems, this requires filesystem mounted at all nodes.
Such operation requires heavy access to the shared filesystem and can result in the
performance decrease.

This situation can be changed in a simple way. Each thread can read from the
local file (e.g. /tmp/file) or use a file with the different name.

270 Scanner sc = null;

271 String f = "input"+PCJ.myId()+".txt";

15

272 try {

273 sc = new Scanner(new File(f));

274 } catch (FileNotFoundException ex) { }

275 b = sc.next();

276 PCJ.log(" " + b);

In result each threads receive handlers to the files input0.txt, input1.txt,
input2.txt etc.

0 > line1_of_input0.txt

1 > line1_of_input1.txt

If files are stored on the local filesystem the input operations are fully in-
dependent and will result in the significant speedup. Please note that similar
performance can be achieved using distributed file systems such as lustra, gpfs or
hdfs.

3.11 Output to the file

Output to the file is organized in a simillar way as input. The user can either write
data to the single file located on the shared filesystem or to the local files created
on the local storage. Parallel use of the different files is also possible. Please note
that usage of the single file decreases performance, especially if it is located on the
shared filesystem.

3.12 Java and PCJ library

The PCJ threads are run independently, therefore all operations are executed in
parallel. However, there are situations where some attention should be given to
the Java code executed as multiple PCJ threads running within a single virtual
machine. In such situation, the Java methods can use internal synchronization
and are executed sequentially even when invoked from the different PCJ threads.
A good example is generation of the random numbers using Math.random().

300 double s = 0;

301 for (long i=0; i<n; i++){

302 s = s + Math.radom ();

303 }

The above code will not scale while running multiple PCJ threads within a
single virtual machine, even if running on the multiprocessor/multicore system.

This problem can be removed by using at each PCJ thread Random object an
calling nextDouble() method to generate random number. In this case, even while
running multiple PCJ threads on the single node, each of them is using its own
instance of the Random object which ensures parallel execution of all operations.

310 import java.util.Random;

311 ...

312 double s = 0;

313 Random r = new Random ();

16

314

315 for (long i=0; i<n; i++){

316 s = s + r.nextDouble ();

317 }

Please remember that in this case instead of the single stream of the pseudo-
random numbers, we are using multiple streams of pseudorandom number which
nor necessary has the same statistical properties1.

1The generation of the pseudo random number in the parallel applications is a well known
problem which received significant number of publications.

Chapter 4

Executing PCJ applications

The compilation and execution of the parallel applications, especially while using
some queueing system or another submission environment is not straightforward.
In particular, the information about the nodes parallel application will be running
on is not available in advance or even during job submission but is determined
when a job starts execution.

Most of the systems provide such information through the environment varia-
bles and files with the list of nodes used for job execution.

The list of nodes, especially while multiprocessor nodes are present can contain
multiple lines with the same names. The multiple entries are used, for example,
while running MPI application, to start multiple instances of the parallel applica-
tion on the single node.

In the case of PCJ library the execution is simple. The most efficient mechanism
is to start single Java Virtual Machine on each node. Within this JVM multiple
PCJ threads will be run. While running on multiple node, adequate number of
JVMs will be started, using ssh or mpiexec command.

Please remember, that PCJ threads running within single JVM will use Java
Concurrency Library to synchronize and to communicate. Communication bet-
ween PCJ threads running within different JVMs will be performed using Java
Sockets.

In such situation in order to run PCJ application we will use two files:

nodes.unique - file containing list of nodes used to run JVMs. In principle, this
list contains unique names (no duplicated names).
This file is used by the mpiexec or another command to start a parallel
application.

nodes.txt - file containing a list of the nodes used to start PCJ threads. This list
may contain duplicated entries showing that on the particular node multiple
PCJ threads will be started (within single JVM). The number of PCJ threads
used to run application (PCJ.threadsCount()) will be equal to the number
of lines (entries) in this file.

The list of nodes used to run Java application can be transferred to PCJ.deploy()
or PCJ.start() methods as the string which is a name of the file with the node
names.

17

18

In order to optimize execution on the multinode system, the single Java VM is
started on each node.

100 PCJ.deploy(Files.class , new NodesDescription("nodes.txt"));

4.1 Linux Cluster

The user has to compile PCJ application with Java (Java 8 and above required).
Than the mpiexec or mpirun command is used to run application. The user
has to prepare files nodes.unique and nodes.txt as described above. The mpirun

commnad executes at each node simple bash script which starts java aplication.
Example commands which can be run from script or interactive shell. The first
command is used to load openmpi environment.

module load opempi

mpiexec -hostsfile nodes.unique bash -c ’java -d64 -Xnoclassgc -

Xrs -cp pcj.jar PcjExampleHelloWorld ’

4.2 Linux Cluster with Slurm

The execution is similar to the case of Linux Cluster. However, the proper script
submitted to the queue to be prepared.

This file contains a definition of the parameters passed the to the queueing sy-
stem. The parameters include number of nodes required (nodes=128) and indicate
that 1 process per node will be executed (ppn=1).

The execution of java application is preceded by the gathering list of the nodes
allocated to the job by the queueing system. The unique list of nodes is then
stored in the nodes.unique file.

Please remember that nodes.unique and nodes.txt can be different.

#!/bin/csh

#PBS -N go

#PBS -l nodes =128: ppn=1

#PBS -l mem =512mb

#PBS -l walltime =0:10:00

#PBS

module load openmpi

cat $PBS_NODEFILE > nodes.txt

uniq $PBS_NODEFILE > nodes.unique

mpiexec -hostsfile nodes.unique bash -c ’java -d64 -Xnoclassgc -

Xrs -cp pcj.jar PcjExampleHelloWorld ’

: go.csh

The job is than executed by submitting it with the qsub command:

qsub go.csh

19

4.3 IBM Power 7 (AIX) with Load Leveler

In order to optimize execution on the multinode systems like IBM Power 7, the
PCJ application should exclusively use computer nodes. However, the number of
applications running on each nodes is 1 which is Java VM.

The poe command is used to invoke Java VM’s on the nodes reserved for the
execution.

#@ job_type = parallel

#@ node = 2

#@ tasks_per_node= 1

#@ queue

cat $LOADL_HOSTFILE > nodes.txt

uniq $LOADL_HOSTFILE > nodes.unique

poe "java -Xnoclassgc -Xmx6g -cp .:pcj.jar PcjHelloWorld" -hfile

nodes.unique -statistic print -bindproc yes -task_affinity

core

: go power7.csh

The job is than executed by submitting it with the llsubmit command:

llsubmit go_power7.csh

4.4 IBM BlueGene/Q

The java runtime environment is not yet available on the computing nodes, there-
fore PCJ applications cannot be run. The work on porting Java to bgq nodes is
in progress.

4.5 Cray XC40

There is no specific configuration. The srun from srun can be used to start PCJ
application.

#!/bin/bash -l

#SBATCH -N 2

#SBATCH -n 96

#SBATCH --ntasks -per -node 48

#SBATCH --samples =01:00:00

#SBATCH -A GB56 -15

module load java

srun -N 2 -n 2 hostname | sort > nodes.txt

srun -N 2 -n 2 -c 1 java -d64 -cp .:PCJ -5.x.y.jar HelloWorld

: go xc40.sh

20

sbatch go_xc40.sh

4.6 Intel KNL @ Rescale

The rescale web portal allows user to run PCJ code on Intel KNL system. However,
in standard configuration Java is not included in the execution path and has to be
added manually. Please note that MPI 2017 has to be selected.

export JAVA_HOME =/home/rescale/shared/program/java/jre1 .8.0 _60

export PATH=$PATH:$JAVA_HOME/bin

java -version

mpirun hostname > nodes.all

uniq nodes.all > nodes.uniq

mpirun -hostfile nodes.uniq -ppn 68 hostname > nodes.txt

mpirun -hostfile nodes.uniq -ppn 1 java -cp .:PCJ -5.0.3 - bin.jar

PcjHelloWorld

Acknowledgments

This work has been performed using the PL-Grid infrastructure. The CHIST-ERA
support through NCN grant 2014/14/Z/ST6/00007 is acknowledged.

Bibliography

[1] http://pcj.icm.edu.pl

[2] M. Nowicki, P. Ba la. Parallel computations in Java with PCJ library In: W.
W. Smari and V. Zeljkovic (Eds.) 2012 International Conference on High
Performance Computing and Simulation (HPCS), IEEE 2012 pp. 381-387

[3] Java Platform, Standard Edition 6, Features and Enhancements
http://www.oracle.com/technetwork/java/javase/features-141434.html

[4] B. Carpenter, V. Getov, G. Judd, T. Skjellum and G. Fox. MPJ: MPI-like
Message Passing for Java. Concurrency: Practice and Experience, Volume 12,
Number 11. September 2000

[5] J. Boner, E. Kuleshov. Clustering the Java virtual machine using aspect-
oriented programming. In AOSD ’07: Proceedings of the 6th International
Conference on Aspect-Oriented Software Development, 2007.

[6] Nester Ch., Philippsen M., and Haumacher B. A more efficient RMI for Java.
In Proceedings of the ACM 1999 conference on Java Grande (JAVA ’99).
ACM, New York, NY, USA, 152-159. 1999

[7] D. Mallón, G. Taboada, C. Teijeiro, J.Tourino, B. Fraguela, A. Gómez, R.
Doallo, J. Mourino. Performance Evaluation of MPI, UPC and OpenMP on
Multicore Architectures In: M. Ropo, J. Westerholm, J. Dongarra (Eds.)
Recent Advances in Parallel Virtual Machine and Message Passing Interface
(Lecture Notes in Computer Science 5759) Springer Berlin / Heidelberg 2009,
pp. 174-184

[8] R. W. Numrich, J. Reid. Co-array Fortran for parallel programming ACM
SIGPLAN Fortran Forum Volume 17(2), pp. 1-31, 1998

[9] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, K. Warren. Intro-
duction to UPC and Language Specification IDA Center for Computing 1999

[10] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken.
Titanium: A High-Performance Java Dialect Concurrency: Practice and Ex-
perience, Vol. 10, No. 11-13, September-November 1998.

[11] Java Grande Project: benchmark suite http://www.epcc.ed.ac.uk/research/-
java-grande/

21

